Many descriptions of prey capture by Dionaea muscipula (Venus flytrap)
in popular publications and educational literature are inaccurate. Here
we review well documented literature on prey capture in this
plant’s natural habitat and add observations on prey capture and
attraction mechanisms we have observed in plants cultivated in a
greenhouse and garden. Despite its common name “Venus
flytrap” does not specialize in
f spiders, ants,
and beetles. Flies are only oneto-eighteen percent of what it captures.
In a greenhouse where flies, capable of entering the vents, composed
most of the available prey, over 90% of the prey captured were flies.
Dionaea cultivated in a garden captured a diverse array of animals,
only about 37% of which were flies. Dionaea is a generalist, capturing
a wide variety of prey species. Its capture mechanism does not appear
to have a “syndrome” analogous to the Pollination Syndrome
in flowers where a specific floral type is pollinated by a specific
animal (i.e. Bee Flowers or Fly Flowers). The measured capture rates of
Dionaea are low, about one capture/leaf/month in its native habitat.
Similar but lower rates were measured in the greenhouse and garden. The
single measurements in each habitat need to be repeated, but the low
rates are consistent with the observation that wherever it is observed
Dionaea has nearly all of its traps open. Both the low capture rates
and the large number of open traps suggests that alluring agents
drawing prey either do not exist or are ineffective. Despite reports of
nectar secretion by Dionaea traps, our observations show that
unstimulated traps are always dry unless wet by rain, condensation, or
a sprinkler system. Secretion occurs only after prey capture. Alluring
glands along the outer trap margin have been reported to be visited by
small ants that work their mouthparts over the glands. We have
photographed a fly exhibiting the same behavior. The exact nature of
this behavior needs to be further investigated, but it does not appear
that this attractant can act at a distance since flies are as likely to
land on the outside of a trap as on the inside. Darwin proposed that
the trap closure mechanism allows small prey to escape, preventing the
expenditure of energy on captures likely to be of little benefit.
Recent measurements of prey captures indicate that traps show little
selectivity based on prey size and that while traps could, in theory,
select larger prey, statistically they do not behave this way.
Full text PDF / ganzer Text als PDF: click on cover / Cover anklicken.
References
Attenborough, D. 1994. The Private Life of Plants, a BBC Nature Documentary series. https://www.youtube.com/watch?v=ktIGVtKdgwo
BBC One. 2009. Life: Venus Flytraps: Jaws of Death, narrated by David Attenborough. https://
www.youtube.com/watch?v=O7eQKSf0LmY
Bennett, K.T., and Ellison, A.M. 2009. Nectar, not colour, may lure insects to their death. Biology Letters 5(4): 469-472.
Darwin, C. 1875. Insectivorous Plants. John Murray, London. 462p.
Faegri, K., and van der Pijl, L. 1979. The Principles of Pollination Ecology. Pergamon, Oxford. 244p.
Foot, G., Rice, S.P., and Millett, J. 2014. Red trap colour of the
carnivorous plant Drosera rotundifolia does not serve a prey attraction
or camouflage function. Biology Letters 10 20131024; DOI:
10.1098/rsbl.2013.1024.
Hartmeyer, S.R.H., Bayerl, R., and Hartmeyer, I. 2013. Leuchtende
Karnivoren: Die Lumineszenz der Schierlingsbecher. Das Taublatt 75:
33-44.
Hutchens, J.J., and Luken, J.O. 2009. Prey capture success by
established and introduced populations of the Venus Flytrap (Dionaea
muscipula). Ecological Restoration 33(2): 171-177.
Hutchens, J.J., and Luken, J.O. 2015. Prey capture in the Venus flytrap: collection or selection? Botany 87: 1007-1010.
Joel, D.M., Juniper, B.E., and Dafni, A. 1985. Ultraviolet patterns in
the traps of carnivorous plants. New Phytologist 101(4): 585-593.
Jones, F.M. 1923. The most wonderful plant in the world. Natural History 23(6): 589-596.
Jürgens, A., El-Sayed, A.M., and Suckling, D.M. 2009. Do
carnivorous plants use volatiles for attracting prey insects?
Functional Ecology 23: 875-887.
Kreuzwieser, J., Scheerer, U., Kruse, J., Burzlaff, T., Honsel, A.,
Alfarraj, S., Georgiev, P., Schnitzler, J.P., Ghirardo, A., Kreuzer,
I., Hedrich, R., and Rennenberg, H. 2014. The Venus flytrap attracts
Volume 46 June 2017 61 insects by the release of volatile organic
compounds. Journal of Experimental Botany 65(2): 755-766.
Kurup, R., Johnson, A.J., Sankar, S., Hussain, A.A., Kumar, C.S., and
Sabulal, B. 2013. Fluorescent prey traps in carnivorous plants. Plant
Biology 15(3): 611-615.
Lichtner, F.T., and Williams, S.E. 1977. Prey capture and factors
controlling trap narrowing in Dionaea (Droseraceae). American Journal
of Botany 64(7): 881-886.
Messier, P., Baas, V., Tafilowski, L., and Varga, L. 2005. Optical
brightening agents in photographic paper. Journal of the American
Institute for Conservation 44(1): 1-12.
Nelson, E.C. 1990. Aphrodite’s Mousetrap: a biography of
Venus’s flytrap, with facsimiles of an original pamphlet and the
manuscripts of John Ellis, F.R.S. Boethius Press, Aberystwyth, Wales.
145p.
Roberts, P.R., and Oosting, H.J. 1958. Responses of Venus fly trap
(Dionaea muscipula) to factors involved in its endemism. Ecol.
Monographs 28: 193-218.
Schaefer, H.M., and Ruxton, G.D. 2008. Fatal attraction: carnivorous
plants roll out the red carpet to lure insects. Biology Letters 4(2):
153-155.
WildFilmHistory. 1974. The tender trap, carnivorous plants –
capture and devour.
http://www.wildfilmhistory.org/film/330/clip/815/Carnivorous+plants+-+capture+and+devour.html
Williams, S.E. 1980. How Venus’ flytraps catch spiders and ants. Carnivorous Plant Newsletter 9(3): 65,75-78.